Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Trinitratobis\{ N^{\prime}-[1-(2-pyridyl)-ethylidene]isonicotinohydrazide\}cerium(III): a three-dimensional cerium-organic supramolecular structure

Ying-Ying Zhang and Shi-Xiong Liu*

Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: shixiongliu@yahoo.com

Received 24 May 2009
Accepted 17 June 2009
Online 24 June 2009
The $\mathrm{Ce}^{\mathrm{III}}$ ion in the title complex, $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\right]$, is 12 -coordinated by six chelating nitrate O atoms and six donors (2 O and 4 N atoms) of two N^{\prime}-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligands, exhibiting a bicapped penta-gonal-antiprism-type coordination geometry. The title complex possesses C_{2} point symmetry and is located on a twofold crystallographic axis. Each molecule is linked with four surrounding molecules by four $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, resulting in an extended two-dimensional layer parallel to the $a b$ plane, while $\pi-\pi$ interactions between pyridine rings from neighboring complex molecules connect the twodimensional layers into a three-dimensional cerium-organic supramolecular structure.

Comment

Lanthanide complexes have been widely studied because they exhibit a range of different coordination numbers and coordination configurations. Numerous nitrate-containing lanthanide complexes are archived in the Cambridge Structural Database (Version 5.30 of November 2008; Allen, 2002). A large variation in the coordination number and coordination configuration of the metal atom for these lanthanide nitrate complexes is reported. Examples of eight-coordinate lanthanide complexes with nitrate groups are $\left[\mathrm{Nd}\left(\mathrm{C}_{13} \mathrm{H}_{12}-\right.\right.$ $\left.\mathrm{OP})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}\right)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{EtOH}$ (Gan et al., 2003) and $\left[\mathrm{Dy}(L)\left(\mathrm{NO}_{3}\right)\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right\}\right] \quad(L=2,6$-diacetylpyridinebisbenzoylhydrazone; Tamboura et al., 2003). Lanthanide nitrate complexes with coordination number 9 have also been reported (Platas et al., 1999; Fukuda et al., 2002; Tamboura et al., 2003; Hudson et al., 2003; Diamantopoulou et al., 2003; Drew et al., 2004; Lu et al., 2004; Dröse \& Gottfriedsen, 2008). Ten-coordinate lanthanide nitrate complexes include $\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right], \quad\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right], \quad[\mathrm{La}-$
$\left(\mathrm{NO}_{3}\right)_{3}($ terpy $\left.)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right],\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}(\right.$ terpy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (terpy is $2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine; Fréchette \& Bensimon, 1995), [Ln(terpy) (acac) $\left.\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (acac is acetylacetonate; Fukuda et al., 2002), $\left[\mathrm{Cu}_{2} \mathrm{Gd}(L)_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{MeOH})_{2}\right] \mathrm{NO}_{3} \cdot \mathrm{MeOH}[L$ is $2,6-$ di(acetoacetyl)pyridine; Shiga et al., 2003] and $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3^{-}}\right.$ (phen) $)_{2}$ (phen is 1,10-phenanthroline; Lin \& Feng, 2003). Typical 11-coordinate lanthanide nitrate complexes are [La$\left(\mathrm{NO}_{3}\right)_{4}($ terpy $\left.)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{-},\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{4}(\text { terpy })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$(Fréchette \& Bensimon, 1995), (H_{2} terpy) $\left[\mathrm{Sm}(\right.$ terpy $\left.)\left(\mathrm{NO}_{3}\right)_{4}\right] \mathrm{NO}_{3}$ (Drew et al., 1998) and $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}\right.$ (terpy)] $\cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (Grigoriev et al., 2001). We report here the structure of a 12coordinate cerium nitrate complex with N^{\prime}-[1-(2-pyridyl)ethylidene]isonicotinohydrazide, (I) (Fig. 1).

(I)

The molecule of (I) exhibits C_{2} point symmetry, with atoms Ce1, N6 and O6 located on a crystallographic twofold rotation axis. The Ce^{3+} ion is coordinated by 12 donors (Fig. 2), of which atoms $\mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 2^{\mathrm{i}}, \mathrm{O} 3^{\mathrm{i}}, \mathrm{O} 5$ and $\mathrm{O} 5^{\mathrm{i}}$ [symmetry code: (i) $-x, y,-z+\frac{1}{2}$] are from three bidentate nitrate groups; two carbonyl O atoms (O 1 and $\mathrm{O} 1^{\mathrm{i}}$) and four N atoms ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 1^{\mathrm{i}}$ and $\mathrm{N} 2^{\mathrm{i}}$) from two symmetry-related N^{\prime}-[1-(2-pyridyl)ethyl-

Figure 1
The molecular structure of complex (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.]
idene]isonicotinohydrazide ligands complete the coordination. The environment around the Ce 1 atom can be described as a bicapped pentagonal antiprism with atoms $\mathrm{O} 3^{i}, \mathrm{O} 2^{\mathrm{i}}, \mathrm{O} 5^{\mathrm{i}}$, O 5 and N 2 , and atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1^{\mathrm{i}}, \mathrm{N} 2^{\mathrm{i}}$ and $\mathrm{O} 1^{i}$ forming the two pentagonal bases, atom N 1 of the pyridine group and atom O3 of a coordinated nitrate group being the two capping atoms. The dihedral angle between the two pentagonal bases is 4.11 (9) ${ }^{\circ}$. The $\mathrm{Ce}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ bond distances in the title complex range from 2.620 (2) to 2.684 (2) \AA, with a mean value of $2.642 \AA$ (Table 1). The corresponding mean values in the 12-coordinate compound $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]$-$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Christidis et al., 1999), the 11-coordinate complex $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}(L)$ and the ten-coordinate $2\left[\mathrm{LH}_{3}\right]^{3+}$.-$\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{-} \cdot\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{5}(\mathrm{EtO})\right]^{2-} \cdot 2 \mathrm{NO}_{3}{ }^{-} \cdot \mathrm{OH}^{-} \quad(L=$ 2,4,6-tri-tert-butylpyridine-1,3,5-triazine; Chan et al., 1996) are $2.675,2.599$ and $2.595 \AA$, respectively. This indicates that the $\mathrm{Ce}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ bond distance gets longer with higher coordination number. The $\mathrm{Ce}-\mathrm{O}$ (carbonyl) bond distance in (I) is 2.603 (2) \AA. This indicates that the $\mathrm{Ce}-\mathrm{O}$ (carbonyl) bond is slightly stronger than the $\mathrm{Ce}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ bonds in the title complex. This was also observed in other lanthanide complexes (Shiga et al., 2003; Fukuda et al., 2002; Tamboura et al., 2003).

The three nitrate groups are essentially planar; two are related by a twofold rotation axis, while the third ($\mathrm{N} 6 / \mathrm{O} 5 / \mathrm{O} 5^{\mathrm{i}} /$ O6) exhibits C_{2} symmetry. The two hydrazone ligands are close to being coplanar. The dihedral angle between the two pyridine rings in the same hydrazone ligand is $6.5(2)^{\circ}$. The two hydrazone ligands are related by the twofold rotation axis; the dihedral angles between the two corresponding pyridine rings in the two symmetry-related hydrazone ligands are 84.20 (9) and $82.80(9)^{\circ}$, respectively.

As illustrated in Fig. 3, every cerium complex molecule connects four adjacent complex molecules via four $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds $\left[\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 4^{\mathrm{ii}}, \mathrm{N} 3^{\text {iiii }}-\mathrm{H} 3 B^{\mathrm{iii}} \ldots \mathrm{N} 4, \mathrm{~N} 3^{\mathrm{i}}-\right.$ $\mathrm{H} 3 B^{\mathrm{i}} \cdots \mathrm{N} 4^{\mathrm{iv}}$ and $\mathrm{N} 3^{\mathrm{v}}-\mathrm{H} 3 B^{\mathrm{v}} \cdots \mathrm{N} 4^{\mathrm{i}}$; symmetry codes: (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (iv) $x-\frac{1}{2}, y-\frac{1}{2}, z$; Table 2] to give an extended two-dimensional layer parallel to the $a b$ plane.

The $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ pyridine ring in the molecule at (x, y, z) and the $\mathrm{N} 4 / \mathrm{C} 8-\mathrm{C} 12$ pyridine ring of the molecule at $(-x,-y,-z)$ are almost parallel, with a dihedral angle of $6.5(2)^{\circ}$ between

Figure 2
The coordination geometry of the bicapped pentagonal antiprism for the Ce atom in (I). [Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.]
them. The interplanar spacing is about $3.503 \AA$ and the ringcentroid separation is 3.680 (2) \AA. This indicates a $\pi-\pi$ interaction (shown as dashed lines in Fig. 4) between the two pyridine rings, resulting in an extended one-dimensional chain along the c axis and linking the two-dimensional layers into a three-dimensional metal-organic supramolecular network.

Up to now, the highest coordination number in the known lanthanide nitrate complexes is 12 . It is worth noting that almost all of the lanthanide nitrate complexes with coordination number 12 contain one of the La^{3+} or Ce^{3+} lanthanide ions. This may be because La^{3+} and Ce^{3+} ions possess a $4 f^{n-1} 5 d^{1} 6 s^{2}$ electronic configuration. This type of complex possesses the structural units $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{6}$ or $\operatorname{Ln}(L)_{m}\left(\mathrm{NO}_{3}\right)_{3}$ (where $m=1$ or 2). Examples of complexes with the structural unit $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{6}$ are $\left[\operatorname{bis}\left(8 \text {-quinolyloxyethyl) ether } \cdot \mathrm{H}_{3} \mathrm{O}\right]_{3}\right.$ $\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{6}\right]$ (Tang et al., 1996), $3\left[\mathrm{H}_{2} \text { terpy }\right]^{2+} \cdot 2\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{6}\right]^{3-}$.$3 \mathrm{H}_{2} \mathrm{O}$ (Drew et al., 1998) and $\left[\mathrm{Me}_{4} \text { cyclam }(\mathrm{OHO})_{2}\right]_{2}-$ $\left[\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{6}\right]\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (cyclam is 1,4,8,11-tetraazacyclotetradecane; Lu et al., 2004). Examples of complexes with the structural unit $\mathrm{Ln}(L)_{m}\left(\mathrm{NO}_{3}\right)_{3}$ are $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\right.$ $\left.\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$ (Grigoriev et al., 2001), $\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} L\right](L$ is 1,9 -diaza-18-crown-6; Shestakova et al., 2001) and $\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Su et al., 2007).

Describing the coordination polyhedra of the lanthanide atoms in the 12 -coordinate complexes is quite difficult. An irregular icosahedron is the ambiguous interpretation in some publications concerning these complexes. The coordination geometry of the Ce atom in (I) is a bicapped pentagonal antiprism. All known lanthanide nitrate complexes with coordination number 12 have a discrete structure.

Figure 3
The extended two-dimensional network of complex (I), parallel to the $a b$ plane, formed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Figure 4
The one-dimensional chain along the c axis, formed by $\pi-\pi$ stacking.

The IR spectrum of the title complex exhibits two bands at 3391 and $1635 \mathrm{~cm}^{-1}$ due to $\nu(\mathrm{NH})$ and $\nu(\mathrm{C}=\mathrm{O})$ stretches, respectively. They show the existence of the NH group in the hydrazone ligand, which means that the hydrazone group in complex (I) behaves as a neutral ligand and coordinates to the Ce ion in the keto form via the carbonyl O , hydrazine N and pyridine N atoms.

The absorption bands at 1479,1316 and $1037 \mathrm{~cm}^{-1}$ are assigned to the $\nu(\mathrm{N}=\mathrm{O})\left(\nu_{1}\right), \nu_{\text {asym }}\left(\mathrm{NO}_{2}\right)\left(\nu_{5}\right)$ and $\nu_{\text {sym }}\left(\mathrm{NO}_{2}\right)$ $\left(\nu_{2}\right)$ vibrations, respectively, of the chelating bidentate nitrate ion (Aruna \& Alexander, 1996). The larger separation of $163 \mathrm{~cm}^{-1}$ between the two highest-frequency bands (v_{1} and v_{5}) indicates strong interaction of the O atoms of the nitrate group with the lanthanide ions and is typical of bidentate coordination. The bands observed at 1595 and $1550 \mathrm{~cm}^{-1}$ are assigned to the $\nu(\mathrm{C}=\mathrm{N}$) vibration (Jagst et al., 2005). The band due to the $\nu(\mathrm{N}-\mathrm{N})$ mode appears at $1009 \mathrm{~cm}^{-1}$ (Tamboura et al., 2004). These are consistent with the crystal structure of (I).

Thermogravimetric analysis of complex (I) shows unique weight losses between 510 and 514 K to give a loss of 83.9%, corresponding to the loss of two hydrazone ligands and three nitrate ions per formula unit. The product of thermal decomposition is $\mathrm{Ce}_{2} \mathrm{O}_{3}$. Compared with the high thermal stability of most of lanthanide nitrate complexes (Aruna \& Alexander, 1996), the thermal stability of the title lanthanide nitrate complex is quite low.

Experimental

N^{\prime}-[1-(2-Pyridyl)ethylidene]isonicotinohydrazide ($25 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added to a solution of $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(44 \mathrm{mg}, 0.10 \mathrm{mmol})$ in a mixed solvent of dry methanol and DMF ($1: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{ml}$) with stirring. After stirring for 30 min , the reaction mixture was filtered and left to stand at room temperature. Yellow prism-shaped crystals suitable for X-ray diffraction were obtained by slow evaporation after 10 d (yield 58%). Analysis found: C 38.59 , H 3.07, N 19.18\%; calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{CeN}_{11} \mathrm{O}_{11}$: C 38.71, H 3.00, N 19.10%.

Crystal data

$\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\right]$
$M_{r}=806.68$
Monoclinic, $C 2 / c$
$a=21.842$ (11) \AA
$b=10.591$ (4) \AA
$c=15.105$ (5) A
$\beta=122.317$ (15)

Data collection

Rigaku Weissenberg IP diffractometer
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999)
$T_{\text {min }}=0.686, T_{\text {max }}=1.000$
$($ expected range $=0.538-0.784)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.060$
$S=1.13$
3384 reflections
$V=2953(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.62 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.28 \times 0.17 \times 0.15 \mathrm{~mm}$

14241 measured reflections
3384 independent reflections
3226 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$

224 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=1.22 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\max }=-0.68 \mathrm{e}^{\mathrm{m}} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Ce} 1-\mathrm{O} 1$	$2.6032(17)$	$\mathrm{Ce} 1-\mathrm{O} 3$	$2.684(2)$
$\mathrm{Ce} 1-\mathrm{O} 2$	$2.620(2)$	$\mathrm{Ce} 1-\mathrm{N} 2$	$2.734(2)$
$\mathrm{Ce} 1-\mathrm{O} 5$	$2.621(2)$	$\mathrm{Ce} 1-\mathrm{N} 1$	$2.904(2)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 1$	$67.12(7)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 2$	$73.11(6)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 2$	$66.21(6)$	$\mathrm{O} 3-\mathrm{Ce} 1-\mathrm{N} 2$	$107.34(7)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 2^{\mathrm{i}}$	$114.00(6)$	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 2^{\mathrm{i}}$	$117.54(6)$
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{O} 2^{\mathrm{i}}$	$179.78(8)$	$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{N} 2^{\mathrm{i}}$	$110.70(6)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 5$	$122.32(6)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 2^{\mathrm{i}}$	$111.19(6)$
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{O} 5$	$69.21(7)$	$\mathrm{O} 3-\mathrm{Ce} 1-\mathrm{N} 2^{\mathrm{i}}$	$70.55(7)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 5^{\mathrm{i}}$	$169.34(6)$	$\mathrm{N} 2-\mathrm{Ce} 1-\mathrm{N} 2^{\mathrm{i}}$	$175.54(8)$
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{O} 5^{\mathrm{i}}$	$110.58(7)$	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 1^{\mathrm{i}}$	$123.93(6)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 5^{\mathrm{i}}$	$48.87(10)$	$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{N} 1^{\mathrm{i}}$	$67.18(6)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{i}}$	$71.12(6)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 1^{\mathrm{i}}$	$64.08(6)$
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{i}}$	$132.21(6)$	$\mathrm{O} 3-\mathrm{Ce} 1-\mathrm{N} 1^{\mathrm{i}}$	$61.03(7)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{i}}$	$121.14(7)$	$\mathrm{N} 2-\mathrm{Ce} 1-\mathrm{N} 1^{\mathrm{i}}$	$126.90(7)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 3$	$65.02(6)$	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 1$	$107.11(6)$
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{O} 3$	$47.93(6)$	$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{N} 1$	$112.69(6)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 3$	$107.32(7)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 1$	$60.38(7)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 3$	$126.84(9)$	$\mathrm{O} 3-\mathrm{Ce} 1-\mathrm{N} 1$	$160.40(6)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 2$	$58.18(6)$	$\mathrm{N} 2-\mathrm{Ce} 1-\mathrm{N} 1$	$55.90(6)$
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{N} 2$	$69.31(6)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{N} 1$	$118.48(9)$

Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 4^{\mathrm{ii}}$	0.86	2.27	$2.905(3)$	131
Symmetry code: (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$				

All H atoms were placed in calculated positions and refined using a riding model $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms, and $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$.

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS98 (Sheldrick, 2008); program(s) used to refine structure: SHELXL98 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97/2 (Sheldrick, 2008).

The authors are grateful for financial support from the National Natural Science Foundation of China (grant Nos. 20431010 and 20171012).

[^0]
References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Aruna, V. A. J. \& Alexander, V. (1996). J. Chem. Soc. Dalton Trans. pp. 18671873.

Chan, G. Y. S., Drew, M. G. B., Hudson, M. J., Isaacs, N. S. \& Byers, P. (1996). Polyhedron, 15, 3385-3398.
Christidis, P. C., Tossidis, I. A. \& Paschalidis, D. G. (1999). Acta Cryst. C55, 707-710.
Diamantopoulou, E., Papaefstathiou, G. S., Terzis, A., Raptopoulou, C. P., Desseyn, H. O. \& Perlepes, S. P. (2003). Polyhedron, 22, 825-835.
Drew, M. G. B., Hill, C., Hudson, M. J., Iveson, P. B., Madic, C. \& Youngs, T. G. A. (2004). Dalton Trans. pp. 244-251.

metal-organic compounds

Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L., Liljenzin, J.-O., Skalberg, M., Spjuth, L. \& Madic, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2973-2980.
Dröse, P. \& Gottfriedsen, J. (2008). Z. Anorg. Allg. Chem. 634, 87-90.
Fréchette, M. \& Bensimon, C. (1995). Inorg. Chem. 34, 3520-3527.
Fukuda, Y., Nakao, A. \& Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527-533.
Gan, X.-M., Paine, R. T., Duesler, E. N. \& Nöth, H. (2003). Dalton Trans. pp. 153-159.
Grigoriev, M. S., Den Auwer, C. \& Madic, C. (2001). Acta Cryst. C57, 11411143.

Hudson, M. J., Drew, M. G. B., Foreman, M. R. St J., Hill, C., Huet, N., Madic, C. \& Youngs, T. G. A. (2003). Dalton Trans. pp. 1675-1685.

Jagst, A., Sanchez, A., Vazquez-Lopez, E. M. \& Abram, U. (2005). Inorg. Chem. 44, 5738-5744.
Lin, Q.-Y. \& Feng, Y.-L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 531-532.
Lu, W.-J., Zhang, L.-P., Chan, H.-S., Chan, T.-L. \& Mak, T. C. W. (2004). Polyhedron, 23, 1089-1096.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Molecular Structure Corporation (1999). TEXRAY (Version 1.10) and TEXSAN (Version 1.10). MSC, The Woodlands, Texas, USA.
Platas, C., Avecilla, F., de Blas, A., Geraldes, C. F. G. C., Rodríguez-Blas, T., Adams, H. \& Mahía, J. (1999). Inorg. Chem. 38, 3190-3199.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shestakova, A. K., Chertkov, V. A., Schneider, H.-J. \& Lysenko, K. A. (2001). Org. Lett. 3, 325-327.
Shiga, T., Ohba, M. \& Okawa, H. (2003). Inorg. Chem. Commun. 6, 15-18.
Su, Y.-L., Yang, L.-M., Xu, Y.-Z., Wang, Z.-M., Weng, S.-F., Yan, C.-H., Wang, D.-J. \& Wu, J.-H. (2007). Inorg. Chem. 46, 5508-5517.

Tamboura, F. B., Diop, M., Gaye, M., Sall, A. S., Barry, A. H. \& Jouini, T. (2003). Inorg. Chem. Commun. 6, 1004-1010.

Tamboura, F. B., Haba, P. M., Gaye, M., Sall, A. S., Barry, A. H. \& Jouini, T. (2004). Polyhedron, 23, 1191-1197.

Tang, Y., Feng, Y.-C., Gan, X.-M. \& Tan, M.-Y. (1996). Polyhedron, 15, 32193223.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3327). Services for accessing these data are described at the back of the journal.

